lyrics _comparison
April 30, 2020

1 This is a notebook where I play around with the Python ma-
chine learning library scikit-learn and pandas library to try and
differentiate between the albums of two of my favorite artists:
Drake and Kanye West.

2 Created by Nurzhan Kanatzhanov.

2.0.1 Standard word processing functions to tokenize and process text

[7]: import math, re
import glob, os
import pandas as pd
from collections import Counter

def tokenize(s):
Input:
string s
Output:
list of strings

nmnn

return s.split()

def preprocess(s, lowercase=True, strip_punctuation=True):
o
Input:
string s
boolean lowercase
boolean strip_punctuation
Return:
list of strings
win
punctuation = '.,?<>:;"\ "1y
if isinstance(s, str):
s = tokenize(s)
if lowercase:
s = [t.lower() for t in s]

https://nurzhankanatzhanov.github.io/portfolio/

[8]:

[9]:

if strip_punctuation:
s = [t.strip(punctuation) for t in s]

return s

def token_frequency(tokens=None, tf={}, relative=False):
Input:
tokens = list of strings or None
tf = dict or None
relative = boolean
Return:
dictionary of token frequencies
for t in tokens:
if t in tf:
tf[t]+=1
else:
tflt]l=1
if relative:
total = sum([c for t, c in tf.items()])
tf = {t:tf[t]/total for t in tf}
return tf

2.0.2 using glob module to retrieve files/pathnames of all .txt files (credit to AZLyrics
for the lyrics of the artists)

path = '/Users/nurzhan.kanatzhanov/Desktop/SP2020/Web Portfolio/portfolio/txt/*.
—txt!

filenames = glob.glob(path)

2.0.3 setting the variable TOP_N to 20 to learn a model on the 20 most frequent
words in each artists’ album and using them as features (columns) in a pandas
DataFrame

TOP_N = 20
tf = {}
for fn in filenames:
s = open(fn, 'r').read()
tf = token_frequency(preprocess(s), tf=tf)

top_f = sorted(tf.items(), key=lambda x:x[1], reverse=True) [:TOP_N]

features = [t[0] for t in top_f]

https://azlyrics.com

2.0.4 using the os library to split the filenames and give them proper titles to label
each album nicely

2.0.5 next, I calculate the relative frequencies of each word (token) in the album and
save them in a dictionary, creating vectors for the pandas DataFrame

[10]: labels = [os.path.split(fn) [1][:-4].replace('_', ' ').title() for fn in
—filenames]

vectors = [token_frequency(preprocess(open(f, 'r').read()), tf={},,
—relative=True) for f in filenames]

vectors = [{key:v[key] for key in v if key in features} for v in vectors]

vectors_df = pd.DataFrame(vectors, index=labels, columns=features).fillna(0)

2.0.6 this is what a 20-feature, 17 album DataFrame looks like, with relative frequen-
cies of each word in each album

[11]: | # remove truncation and adjust column width
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', -1)
vectors_df

[11]: i the you \
Kanye My Beatiful Dark Twisted Fantasy 0.036624 0.043570 0.029362
Drake Take Care 0.036989 0.032581 0.045286
Kanye College Dropout 0.039347 0.031830 0.022013
Drake Scorpion 0.037743 0.030554 0.036844
Drake So Far Gone 0.048596 0.031977 0.030258
Kanye Jesus Is King 0.024240 0.061113 0.020826
Kanye Late Registration 0.033267 0.037939 0.022029
Drake If Youre Reading This Its Too Late 0.042807 0.033295 0.029118
Kanye Graduation 0.042311 0.030783 0.030910
Kanye Ye 0.050205 0.035680 0.030628
Drake More Life 0.039446 0.029531 0.031023
Drake Nothing Was The Same 0.044998 0.036020 0.029154
Kanye 808S & Heartbreak 0.045489 0.031164 0.054034
Kanye Yeezus 0.030827 0.038533 0.025689
Drake Views 0.046472 0.023131 0.046895
Drake Thank Me Later 0.044433 0.028781 0.034840
Kanye The Life 0f Pablo 0.046310 0.035860 0.025190

to and a \

Kanye My Beatiful Dark Twisted Fantasy 0.015049 0.019364 0.021995

Drake
Kanye
Drake
Drake
Kanye
Kanye
Drake
Kanye
Kanye
Drake
Drake
Kanye
Kanye
Drake
Drake
Kanye

Kanye
Drake
Kanye
Drake
Drake
Kanye
Kanye
Drake
Kanye
Kanye
Drake
Drake
Kanye
Kanye
Drake
Drake
Kanye

Kanye
Drake
Kanye
Drake
Drake
Kanye
Kanye
Drake
Kanye
Kanye

Take Care

College Dropout
Scorpion

So Far Gone

Jesus Is King

Late Registration

If Youre Reading This Its Too Late
Graduation

Ye

More Life

Nothing Was The Same
808S & Heartbreak
Yeezus

Views

Thank Me Later

The Life 0f Pablo

My Beatiful Dark Twisted Fantasy
Take Care

College Dropout

Scorpion

So Far Gone

Jesus Is King

Late Registration

If Youre Reading This Its Too Late
Graduation

Ye

More Life

Nothing Was The Same

8085 & Heartbreak

Yeezus

Views

Thank Me Later

The Life 0f Pablo

My Beatiful Dark Twisted Fantasy
Take Care

College Dropout

Scorpion

So Far Gone

Jesus Is King

Late Registration

If Youre Reading This Its Too Late
Graduation

Ye

O O O O O OO O OO OO OO oo

O O O O O O OO OO OO OoO oo oo

.017285
.022703
.020040
.019370
.014681
.0205683
.018561
.018115
.017998
.026759
.020703
.019352
.017749
.024609
.016789
.019030

it
.011050
.018927
.010661
.013839
.016504
.006487
.010236
.016821
.012921
.015788
.011834
.025140
.017090
.014012
.019434
.018935
.010450

i'm
.011261
.012791
.008360
.010873
.021433
.007170
.009123
.022390
.011274
.005684

O O O O O O O OO OO OO O oo

O O OO O O OO OO OO OoOoO o oo

O O O O O O O o oo

.022643
.0256234
.017344
.028539
.0105684
.019137
.012645
.021155
.013262
.014072
.015422
.014828
.016581
.018166
.018935
.012430

me

.011682
.015556
.012272
.023275
.010430
.010584
.012350
.014733
.017102
.010104
.018124
.013415
.010304
.012844
.021969
.017420
.010890

that

.008840
.017112
.011888
.015007
.011117
.005463
.012239
.011485
.008994
.013262

O O O O O O OO OO OO OO oo

O O O O OO OO OO O OO O o oo

O O OO O O O O O o

.015038
.017794
.015906
.019943
.013315
.016355
.021346
.013935
.011683
.018124
.014471
.011812
.021485
.022708
.016662
.016280

my

.012839
.008815
.015647
.013659
.014900
.018436
.011682
.012529
.013301
.011999
.015032
.012253
.014074
.015180
.016265
.009089
.014080

in

.014944
.011235
.0095611
.008717
.012722
.009560
.009791
.011021
.010008
.007262

Drake
Drake
Kanye
Kanye
Drake
Drake
Kanye

Kanye
Drake
Kanye
Drake
Drake
Kanye
Kanye
Drake
Kanye
Kanye
Drake
Drake
Kanye
Kanye
Drake
Drake
Kanye

Kanye
Drake
Kanye
Drake
Drake
Kanye
Kanye
Drake
Kanye
Kanye
Drake
Drake
Kanye
Kanye
Drake
Drake
Kanye

More Life

Nothing Was The Same
808S & Heartbreak
Yeezus

Views

Thank Me Later

The Life 0f Pablo

My Beatiful Dark Twisted Fantasy
Take Care

College Dropout

Scorpion

So Far Gone

Jesus Is King

Late Registration

If Youre Reading This Its Too Late
Graduation

Ye

More Life

Nothing Was The Same

8085 & Heartbreak

Yeezus

Views

Thank Me Later

The Life 0f Pablo

My Beatiful Dark Twisted Fantasy
Take Care

College Dropout

Scorpion

So Far Gone

Jesus Is King

Late Registration

If Youre Reading This Its Too Late
Graduation

Ye

More Life

Nothing Was The Same

808S & Heartbreak

Yeezus

Views

Thank Me Later

The Life 0f Pablo

O O O O O O o

O O OO O OO OO OO OO oo oo

O O O O O OO OO OO OO oo oo

.014712
.009295
.013069
.014012
.011935
.011613
.010670

on

.005578
.008297
.008283
.010784
.016619
.019802
.008011
.011717
.008487
.014209
.010448
.013309
.006534
.012377
.011829
.007700
.007370

for

.008630
.007692
.006443
.014558
.005616
.006487
.006676
.007193
.004180
.004105
.007143
.008556
.003770
.003270
.009400
.007574
.007920

they

O O O O O O o

O O OO O OO OO OO OoOoO oo oo

O O O O O O O OO OO OOoOoO o oo

.010021
.014049
.014577
.009809
.011301
.015021
.009020

like

.006104
.007864
.009587
.008088
.007106
.008194
.007343
.009049
.008741
.006315
.010981
.010140
.007288
.006539
.013942
.006564
.006600

we

.007262
.007087
.006596
.004134
.004928
.022875
.010570
.007541
.007601
.006947
.008742
.008767
.005529
.011443
.005703
.005049
.009130

your

O O O O O O O

O O O O O OO OO OO OO O o oo

O O O O O OO OO OO0 O oo oo

.007569
.008873
.011561
.021018
.009717
.009215
.015070

know

.009051
.012358
.006213
.007728
.006418
.003073
.004673
.010093
.007347
.010420
.010341
.008662
.015330
.007940
.008344
.007069
.007700

up

.006104
.006568
.009434
.006380
.006074
.007170
.006453
.009745
.006714
.008525
.010554
.005915
.003267
.008174
.005598
.005933
.008030

Kanye My Beatiful Dark Twisted Fantasy 0.005367 0.006630
Drake Take Care 0.010198 0.008297
Kanye College Dropout 0.004679 0.008360
Drake Scorpion 0.009795 0.008447
Drake So Far Gone 0.005616 0.006189
Kanye Jesus Is King 0.005463 0.008877
Kanye Late Registration 0.006453 0.005785
Drake If Youre Reading This Its Too Late 0.008701 0.004408
Kanye Graduation 0.005067 0.004687
Kanye Ye 0.008841 0.004736
Drake More Life 0.006716 0.006610
Drake Nothing Was The Same 0.004859 0.004753
Kanye 808S & Heartbreak 0.003770 0.009299
Kanye Yeezus 0.006305 0.011910
Drake Views 0.011301 0.006232
Drake Thank Me Later 0.007448 0.006943
Kanye The Life 0f Pablo 0.005280 0.007590

2.0.7 wusing scikit-learn’s KMeans to learn 2 clusters from the data

[12]: from sklearn.cluster import KMeans

n_clusters = 2
kmeans = KMeans(n_clusters = n_clusters, random_state = 0).fit(vectors_df)

2.0.8 projecting all 20 features onto a 2-dimensional space using scikit-learn’s prin-
cipal component analysis (PCA).

[13]: from sklearn.decomposition import PCA

pca = PCA(n_components=2)
transformed = pca.fit_transform(vectors_df)

= transformed[:,0]
transformed[:,1]

< ™
o

2.0.9 finally, using the matplotlib Python plotting library and an automatic label
placement library adjustText (link) to make a scatter plot of the 17 albums on
a 2D transformed space.

[18]: import matplotlib.pyplot as plt
from adjustText import adjust_text

col_dict = {0:'green', 1:'blue'}
cols = [col dict[1l] for 1 in kmeans.labels]
plt.figure(figsize=(16,12))

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://github.com/Phlya/adjustText

plt.scatter(x,y, c=cols, s=100, alpha=.65)
texts = []
for i, 1 in enumerate(labels):
texts.append(plt.text(x[i],y[i], 1, weight='bold'))
arrows = []
for i, ¢ in enumerate(pca.components_.transpose()):
plt.arrow(0,0, c[0]/30, c[1]1/30, alpha=.2, width=.0001, color="red")
arrows.append(plt.text(c[0]/30, c[1]/30, features[il))
plt.xlabel('PCA1")
plt.ylabel('PCA2")
plt.title("Drake's and Kanye West's albums in a space of {} most common,
—features".format (TOP_N))
adjust_text (texts)
adjust_text (arrows)

plt.show()
Drake's and Kanye West's albums in a space of 20 most common features
you
0.02
dunye B808S & Heartbreak
the Kanye Jesus Is Kin%
001 d)rnk: Take Care
e
know
your
3 ‘)mke Views "mlt‘hgatsmmmn My Beatiful Dark Twisted Fant:
L+ it ey . .Knnye y Beatiful Dark Twisted Fantasy
me Vg Ye nye Yeezus
000 rake NBthing Was The saffe
q)nke Thank Me/Later
rake More Life B .
nye Faduation d(nnye Late Registration
Drake If Youre Reading This Its Too LR: &lnye The Life Of Pablo
i'm
a
i and
-0.01 ke So Far G
‘)" orar nne‘“n“ College Dropout
—0.02
-0.02 -001 o.oo 001 0oz 003 004
PCAL

2.0.10 as we see from the plot above, 6 out of 9 Kanye West albums got clustered
together in blue (Jesus is king, My Beautiful Dark Twisted Fantasy, Yeezus,
Late Registration, The Life of Pablo, and College Dropout). However, 3 of
them (808s € Hearbreak, Ye, and Graduation) were clustered with Drake’s
albums. It is good to note that all of Drake’s albums were clustered together
(in green), showing common similarities in the rapper’s word choice.

2.0.11 Now, let’s try something different. As expected in any text corpus, the most
common features would be short stopwords like you, the, it, I, etc. Let’s see
what would happen if we try to exclude these words and play around with
gensim, an unsupervised topic modeling and language processing library.

implementing a helper function that would filter out the stopwords
[15]: def get_texts(filenames, stop_words):
for fn in filenames:
text = open(fn, 'r').read()
text = [t for t in preprocess(text) if t not in stop_words]
yield(text)

[74]: NUM_TOPICS = 5
TOPN = 15
STOP = 100

2.0.12 One of the strategies to get the stopwords is too find the 100 most frequent
words

[75]: fregs = {}
for file in filenames:
freqs = token_frequency(preprocess(open(file, 'r').read()), tf=freqs)
stop_words = sorted(freqs, key=freqs.__getitem__, reverse=True) [:STOP]

2.0.13 Make a gensim Dictionary first to map between words and their integer ID’s,
and then convert each document into the bag-of-words (BoW) format.

2.0.14 Next, I use the gensim Latent Dirichlet Allocation (LDA) algorithm for topic
modeling

[76]: from gensim import corpora, models, similarities
dictionary = corpora.Dictionary(get_texts(filenames, stop_words))
corpus = [dictionary.doc2bow(text) for text in get_texts(filenames, stop_words)]

lda = models.LdaModel (corpus, id2word=dictionary, num_topics=NUM_TOPICS)

corpus_lda = ldal[corpus]

[77]:

[78]:

2.0.15 For visualization, this is what the top 15 words in each topic would be:

for topic in range(NUM_TOPICS):
tt = lda.get_topic_terms(topic, topn=TOPN)
top_words = [dictionary[t] for t, w in tt]
top_words = ', '.join(top_words)
print('Topic {:>2d}: {}'.format(topic, top_words))

Topic O0: who, look, them, new, through, even, will, everything, real, em,
think, come, did, always, god

Topic 1: why, look, things, money, think, where, or, thing, real, us, only,
than, god, even, night

Topic 2: us, as, who, money, said, over, much, them, only, think, god, new,
i'll, things, even

Topic 3: even, them, where, everything, over, us, think, mind, real, only, or,
as, em, come, i'll

Topic 4: only, them, over, where, as, new, or, think, everything, us, money,
always, i'll, said, night

2.0.16 This is each albums distribution of topics by percentage:

for i, label in enumerate(labels):
topics = sorted(corpus_ldal[i], key = lambda x:x[1], reverse=True)
topics = ['Topic {} ({:2.2f}%)'.format(t[0], t[1]*100) for t in topics]
topics = ', '.join(topics)
print ('{}:\n{}\n'.format(label, topics))

Kanye My Beatiful Dark Twisted Fantasy:
Topic 2 (68.28%), Topic 1 (28.41%), Topic 0 (3.30%)

Drake Take Care:
Topic 3 (87.61%), Topic 0 (6.78%), Topic 2 (3.89%), Topic 1 (1.70%)

Kanye College Dropout:
Topic 2 (70.80%), Topic 1 (24.85%), Topic 3 (2.46%), Topic 4 (1.89%)

Drake Scorpion:
Topic 3 (64.06%), Topic 0 (15.62%), Topic 1 (11.71%), Topic 2 (8.23%)

Drake So Far Gone:
Topic 1 (89.16%), Topic 3 (7.61%), Topic 4 (2.16%), Topic O (1.06%)

Kanye Jesus Is King:
Topic 2 (99.92%)

Kanye Late Registration:
Topic 3 (93.90%), Topic O (3.46%), Topic 1 (2.61%)

[79]:

Drake If Youre Reading This Its Too Late:
Topic 1 (88.01%), Topic 3 (7.78%), Topic 0 (3.75%)

Kanye Graduation:
Topic 3 (62.37%), Topic 0 (20.73%), Topic 1 (16.89%)

Kanye Ye:
Topic 1 (99.11%)

Drake More Life:
Topic O (67.26%), Topic 1 (30.99%)

Drake Nothing Was The Same:
Topic 2 (77.77%), Topic 0 (20.26%), Topic 1 (1.95%)

Kanye 808S & Heartbreak:
Topic 0 (92.71%), Topic 1 (7.25%)

Kanye Yeezus:
Topic 3 (74.88%), Topic 1 (18.16%), Topic 0 (6.94%)

Drake Views:
Topic 1 (53.94%), Topic 3 (36.03%), Topic 2 (10.02%)

Drake Thank Me Later:
Topic O (64.11%), Topic 3 (35.36%)

Kanye The Life 0f Pablo:
Topic 2 (57.53%), Topic 1 (23.70%), Topic O (11.88%), Topic 3 (6.89%)

2.0.17 I am also going to use gensim’s similarities class that “computes similarities
across a collection of documents in the Vector Space Model.” This will connect
the most similar albums between Drake and Kanye West.

similarity_index = similarities.SparseMatrixSimilarity(corpus_lda,
—num_features=NUM_TOPICS)

print('Most similar texts:\n')

for i, label in enumerate(labels):
sim = similarity_index[corpus_ldal[i]]
sim_labels = sorted(zip(sim, labels), reverse=True)
sim_print [1 for s, 1 in sim_labels] [1:4]
sim_print ', '.join(sim_print)
print('{}: {}\n'.format(label, sim_print))

Most similar texts:

10

Kanye My Beatiful Dark Twisted Fantasy: Kanye College Dropout, Kanye The Life Of
Pablo, Kanye Jesus Is King

Drake Take Care: Kanye Late Registration, Drake Scorpion, Kanye Yeezus

Kanye College Dropout: Kanye College Dropout, Kanye The Life Of Pablo, Kanye
Jesus Is King

Drake Scorpion: Kanye Yeezus, Drake Take Care, Kanye Graduation

Drake So Far Gone: Drake If Youre Reading This Its Too Late, Kanye Ye, Drake
Views

Kanye Jesus Is King: Drake Nothing Was The Same, Kanye My Beatiful Dark Twisted
Fantasy, Kanye College Dropout

Kanye Late Registration: Drake Take Care, Kanye Yeezus, Drake Scorpion

Drake If Youre Reading This Its Too Late: Drake So Far Gone, Kanye Ye, Drake
Views

Kanye Graduation: Drake Scorpion, Kanye Yeezus, Kanye Late Registration

Kanye Ye: Drake So Far Gone, Drake If Youre Reading This Its Too Late, Drake
Views

Drake More Life: Kanye 808S & Heartbreak, Drake Thank Me Later, Drake If Youre
Reading This Its Too Late

Drake Nothing Was The Same: Kanye Jesus Is King, Kanye My Beatiful Dark Twisted
Fantasy, Kanye The Life Of Pablo

Kanye 808S & Heartbreak: Drake More Life, Drake Thank Me Later, Kanye Graduation
Kanye Yeezus: Drake Scorpion, Kanye Late Registration, Drake Take Care

Drake Views: Drake If Youre Reading This Its Too Late, Drake So Far Gone, Kanye
Ye

Drake Thank Me Later: Kanye 808S & Heartbreak, Drake More Life, Kanye Graduation

Kanye The Life 0f Pablo: Kanye My Beatiful Dark Twisted Fantasy, Kanye College
Dropout, Drake Nothing Was The Same

11

2.0.18 Let’s visualize 25 most common words:

[80]: import matplotlib.pyplot as plt

plt.figure(figsize=(15,10))
print(1lda.get_topics() [0])

tokens, y = zip(xlda.get_topic_terms(l, topn=25))
tokens = [dictionary[t] for t in tokens]

x = list(range(25))

plt.bar(x,y, tick_label=tokens)
plt.xticks(rotation='vertical')
plt.xlabel('word')

plt.ylabel('frequency')

[2.0291578e-04 2.8627848e-05 2.8341370e-05 .. 2.7051228e-05 2.4993044e-05
3.8262078e-05]

[80]: Text(0, 0.5, 'frequency')

0.0035 4

0.0030 4

0.0025 4

0.0020 4

frequency

0.0015 4

00010 4

0.0005 1

0.0000 -

12

[81]:

[82]:

[82]:

[83]:

[84]:

2.0.19 Now, let’s create vectors for the new pandas DataFrame with the distribution
of topics of the 17 albums

topics = list(range(NUM_TOPICS))
vectors = [{index:ratio for index, ratio in v} for v in corpus_lda]

vectors_df = pd.DataFrame(vectors, index=labels, columns=topics).fillna(0)
n_clusters=2

kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(vectors_df)
kmeans.labels_

array([(1, 0, 1, 0, O, 1, O, O, O, O, O, 1, O, O, O, O, 1], dtype=int32)

pca = PCA(n_components=2)
transformed = pca.fit_transform(vectors_df)

x = transformedl[:,0]
y = transformed[:,1]

col_dict = {0:'green', 1:'blue'}
cols = [col dict[1l] for 1 in kmeans.labels]
plt.figure(figsize=(16,12))
plt.scatter(x,y, c=cols, s=100, alpha=.65)
texts = []
for i, 1 in enumerate(labels):
texts.append(plt.text(x[i],y[i], 1, weight='bold'))
arrows = []
for i, ¢ in enumerate(pca.components_.transpose()):
plt.arrow(0,0, c[0]/2, c[1]/2, alpha=.3, width=.002, color="red")
arrows.append(plt.text(c[0]/2, c[1]1/2, topics[i]))
plt.xlabel('PCA1")
plt.ylabel('PCA2')
plt.title("Drake's and Kanye West's albums in a space of {} topics".
—format (NUM_TOPICS))
adjust_text (texts)
adjust_text (arrows)
plt.show()

13

[99]:

[104]:

Drake's and Kanye West's albums in a space of 5 topics

08 ‘(nnye Ye

rake So Far Gone
.Dmlm If Youre Reading This Its Too Late

06

04

‘)rnkn Views

02
¥ d)rnke More Life

00 .

0 " N
nye Graduation Kanye My Beatiful Dark Twisted Fantasy.

an“ Yeezus 3 ‘(nnye B808S & Heartbreak Kanye The Life Of Pablo. anye College Dropout
‘)rnka Scorpion

-02 2
d)rnke Thank Me Later

d(nnye Late Registration
$mke Take Care

Drake Nothing Was The Snme.

Kanye Jesus Is Kin%

-0.6 -0.4 -0.2 0.0 0.2 04 06 VE:]
PCAL

2.0.20 Now, let’s try something interesting: bring in another artist from a completely
different genre of music. After some thought, I decided to include AC/DC, a
hard rock band, to see how well the classification will work between different
genres/styles of music.

path_acdc = '/Users/nurzhan.kanatzhanov/Desktop/SP2020/Web Portfolio/portfolio/
—txt/acdc/*.txt'

filenames_acdc = glob.glob(path_acdc)

filenames_acdc.extend(filenames)

NUM_TOPICS = 10
freqs = {}
for file in filenames_acdc:
freqs = token_frequency(preprocess(open(file, 'r').read()), tf=freqgs)
stop_words = sorted(freqs, key=freqs.__getitem__, reverse=True) [:STOP]

from gensim import corpora, models, similarities

dictionary = corpora.Dictionary(get_texts(filenames_acdc, stop_words))

14

[105]:

[106] :

[107]:

corpus = [dictionary.doc2bow(text) for text in get_texts(filenames_acdc,
—stop_words)]
lda = models.LdaModel(corpus, id2word=dictionary, num_topics=NUM_TOPICS)

corpus_lda = ldal[corpus]
topics = list(range(NUM_TOPICS))
vectors = [{index:ratio for index, ratio in v} for v in corpus_lda]

labels = [os.path.split(fn) [1][:-4].replace('_', ' ').title() for fn in,
—.filenames_acdc]

vectors_df = pd.DataFrame(vectors, index=labels, columns=topics).fillna(0)

2.0.21 Trying to cluster into 3 groups now

n_clusters=3
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(vectors_df)

pca = PCA(n_components=2)
transformed = pca.fit_transform(vectors_df)

x = transformedl[:,0]
y = transformed[:,1]

col_dict = {0:'green', 1:'blue', 2:'yellow'}
cols = [col_dict[1l] for 1 in kmeans.labels_]
plt.figure(figsize=(16,12))
plt.scatter(x,y, c=cols, s=100, alpha=.65)
texts = []
for i, 1 in enumerate(labels):
texts.append(plt.text(x[i],y[i], 1, weight='bold'))
arrows = []
for i, ¢ in enumerate(pca.components_.transpose()):
plt.arrow(0,0, c[0]/2, c[1]/2, alpha=.3, width=.002, color="red")
arrows.append(plt.text(c[0]/2, c[1]/2, topics[i]))
plt.xlabel ('PCA1')
plt.ylabel('PCA2')
plt.title("Drake's, Kanye West's, and AC/DC's albums in a space of {} topics".
—format (NUM_TOPICS))
adjust_text (texts)
adjust_text (arrows)
plt.show()

15

Drake's, Kanye West's, and AC/DC's albums in a space of 10 topics

Kanye Ye
Kanye 8085 & Heartbreak
06
Drake Nothing Was The Same
04 Acdc Let There Be Rock
Kanye Yeezus
3
02 Acdc The Razor'S Edge
‘)nkc Scorpion .MEdc Dirty Deeds Done Dirt Cheap Acdc Fly On The Wall
) d}rnkﬂ More Life 5
& Drake Thank Me Later .Knnye ﬂgBeat&ul Dark Twisted Fantasy
001 brake vie: Acdc Powerage 7
Kanye Latefegjgtration Acdc High Voltage 9
rake Take Care "
- Acdc Highway To Hell N
Kanye The Life Of Pablo g‘anye Graduation
Drake If Youre Reading This Its Too Late gPrake So Far Gone
—0.2
Acde For Those About To Rocl:.
&cdc Flick Of The Switch
d(nnye Jesus Is King
-04 Acdc Blow Up Your Video.
Kanye College Dropuut.
-06 Acdc Back In Blackg,
—0.6 —0.4 -0.2 0.0 0.2 0.4 06

PCAL

2.0.22 Seems like the addition of AC/DC really does not show any key differences in
topic modeling between AC/DC, Kanye West, and Drake!

16

	This is a notebook where I play around with the Python machine learning library scikit-learn and pandas library to try and differentiate between the albums of two of my favorite artists: Drake and Kanye West.
	Created by Nurzhan Kanatzhanov.
	Standard word processing functions to tokenize and process text
	using glob module to retrieve files/pathnames of all .txt files (credit to AZLyrics for the lyrics of the artists)
	setting the variable TOP_N to 20 to learn a model on the 20 most frequent words in each artists' album and using them as features (columns) in a pandas DataFrame
	using the os library to split the filenames and give them proper titles to label each album nicely
	next, I calculate the relative frequencies of each word (token) in the album and save them in a dictionary, creating vectors for the pandas DataFrame
	this is what a 20-feature, 17 album DataFrame looks like, with relative frequencies of each word in each album
	using scikit-learn's KMeans to learn 2 clusters from the data
	projecting all 20 features onto a 2-dimensional space using scikit-learn's principal component analysis (PCA).
	finally, using the matplotlib Python plotting library and an automatic label placement library adjustText (link) to make a scatter plot of the 17 albums on a 2D transformed space.
	as we see from the plot above, 6 out of 9 Kanye West albums got clustered together in blue (Jesus is king, My Beautiful Dark Twisted Fantasy, Yeezus, Late Registration, The Life of Pablo, and College Dropout). However, 3 of them (808s & Hearbreak, Ye, and Graduation) were clustered with Drake's albums. It is good to note that all of Drake's albums were clustered together (in green), showing common similarities in the rapper's word choice.
	Now, let's try something different. As expected in any text corpus, the most common features would be short stopwords like you, the, it, I, etc. Let's see what would happen if we try to exclude these words and play around with gensim, an unsupervised topic modeling and language processing library.
	One of the strategies to get the stopwords is too find the 100 most frequent words
	Make a gensim Dictionary first to map between words and their integer ID's, and then convert each document into the bag-of-words (BoW) format.
	Next, I use the gensim Latent Dirichlet Allocation (LDA) algorithm for topic modeling
	For visualization, this is what the top 15 words in each topic would be:
	This is each albums distribution of topics by percentage:
	I am also going to use gensim's similarities class that ``computes similarities across a collection of documents in the Vector Space Model.'' This will connect the most similar albums between Drake and Kanye West.
	Let's visualize 25 most common words:
	Now, let's create vectors for the new pandas DataFrame with the distribution of topics of the 17 albums
	Now, let's try something interesting: bring in another artist from a completely different genre of music. After some thought, I decided to include AC/DC, a hard rock band, to see how well the classification will work between different genres/styles of music.
	Trying to cluster into 3 groups now
	Seems like the addition of AC/DC really does not show any key differences in topic modeling between AC/DC, Kanye West, and Drake!

